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Abstract

To estimate the degree of sincerity conveyed by a speech utter-
ance and received by listeners, we propose an instance-based
learning framework with shallow neural networks. The frame-
work plays as not only a regressor that intends to fit the pre-
dicted value to the actual value but also a ranker that preserves
the relative target magnitude between each pair of utterances,
in an attempt to derive a higher Spearman’s rank correlation
coefficient. In addition to describing how to simultaneously
minimize regression and ranking losses, the issue of how ut-
terance pairs work in the training and evaluation phases is also
addressed by two kinds of realizations. The intuitive one is re-
lated to random sampling while the other seeks for represen-
tative utterances, named anchors, to form non-stochastic pairs.
Our system outperforms the baseline by more than 25% relative
improvement in the development set.

Index Terms: regression, ranking, degree of sincerity, shallow
neural networks, computational paralinguistics

1. Introduction

Given a speech utterance, the goal of automatic sincerity evalu-
ation is to tell us how sincere it could convey to human receivers
by means of a learning machine. Without doubt, sincerity itself
is a kind of very subjective affection with seemingly unmeasur-
able range due to individual differences. As aresult, it is usually
much easier to acquire the quantitative degree of sincerity that
a listener feels than the mental state of sincerity that a speaker
has while speaking. The compromise left a broad space for the
progress of some applications, such as personal image consult-
ing and performing arts. For example, with a well-trained ma-
chine, a politician can understand how sincerity the voters will
feel after hearing the speech during a budget-insufficient cam-
paign; an actor/actress can revise his/her speaking style accord-
ing to the machinery feedback before an audition. In spite of a
relatively limited amount of research and experimentation done
in recent years regarding the latent factors of speaking sincerity
[1, 2], we can still leverage machine learning strategies to obtain
useful cues for sincerity evaluation if the coverage of linguistic
content and prosodic types is satisfactory in the collected data
and the respective labels are well annotated [3].

Evaluation metrics. In contrast to a similar task of sar-
casm recognition that deals with binary classification [4, 5], au-
tomatic sincerity evaluation is treated as a problem of regression
in this paper. That is, given a speech utterance, a predicted sin-
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cerity value has to be generated and expected to be as close to
the actual value rated by annotators as possible. However, in-
stead of the well-known mean squared error (MSE), the Spear-
man’s rank correlation coefficient (p) [6], used in the research
on human perception modeling and psycholinguistics [7, 8], has
become a standard evaluation metric in paralinguistic computa-
tion in the Degree of Nativeness and Parkinsons Condition sub-
challenges in ComParE 2015 [9]. Spearman’s p assesses how
well the relationship between predicted and actual values can
be described using a monotonic function by virtue of their own
relative ranks. To our knowledge, there are two reasons why
to adopt it. First, it is less sensitive to extreme values so that
the evaluation of a system can be insusceptible to occasionally
predicted outliers [10]. Second, a sincerity evaluation system
might be good in a pragmatic sense, not because it can precisely
tell us how annotators intend to rate, for these ratings are not as
sensible as something like meters and grams in the metric sys-
tem to ordinary people. Contrarily, a good system can give us
a series of ordinal rank of a set of utterances to represent their
relative degree of sincerity. Decision making by comparison is
always much easier for we humans.

Possible problems. Many popular regression methods, in-
cluding artificial neural networks (ANN) [11] and support vec-
tor regression (SVR) [12], are not designed ad hoc to achieve
higher Spearman’s p, but to minimize the residual sum of
squares between the ground truth and predicted responses di-
rectly or through margin maximization [13]. Notwithstand-
ing a model that gives perfect regression will also give per-
fect ranking, a model with near-perfect regression performance
may yield poor ranking performance. For example, a regres-
sor makes predictions of [1.1, 1.25, 1.24] with an MSE of only
0.002 but a p of 0.5 with respect to the true values of [1.1, 1.2,
1.3]. For a well-trained ranker, however, even if its predicted
values of [4.1, 5.2, 6.3] result in a much worse MSE, it still
achieves a perfect p. Therefore, even in less extreme cases,
small regression errors can cause large ranking errors. Note
that it does not indicate that we should abandon criteria aiming
at minimizing regression errors and entirely pursue the maxi-
mization of Spearman’s p, although ideally we have to. Un-
fortunately, there seems little research on this goal until now.
Although some listwise approaches have been proposed in in-
formation retrieval for the purpose of optimizing other ranking
measures of the test samples, such as the normalized discounted
cumulative gain (NDCG) [14, 15, 16], they are not readily suit-
able for the evaluation scenario in this paper since each test sam-
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ple has to be evaluated identically and independently.

Contributions. To solve the aforementioned problems, we
propose a framework with shallow neural networks using an
objective function for minimizing both regression and pairwise
ranking losses. In contrast to a similar idea presented in [17],
where the two losses are minimized alternatively for training
a linear model by introducing a tradeoff coefficient that helps
randomly fetch an input out of a single sample and a candidate
pair, the proposed training algorithm minimizes the two losses
simultaneously. In addition, this paper has two more contribu-
tions. First, two kinds of realizations are put forward to demon-
strate how utterance pairs are generated and work in the whole
learning and evaluating mechanism. Second, the use of artificial
neural networks with a proper amount of regularization circum-
vents the small sample size problem in our task while sustaining
the generalization ability [18, 19, 20].

The remainder of this paper is organized as follows. Sec-
tion 2 gives our objectives in regression and ranking. Section 3
presents two kinds of architectures based on shallow neural net-
works and shows how to derive the optimal model by minimiz-
ing the regression and ranking losses simultaneously. Section 4
reports the experiment results on the Sincerity sub-challenge of
ComParE 2016. Finally, Section 5 gives the conclusions.

2. Objectives
2.1. Regression and Ranking Losses

The goal of supervised regression is to learn a model M, that
can predict a real-valued target y € R for a feature vector x
using a prediction function f(x) with little loss with respect to
a specified loss function. Given a set of labeled training data
D, the aggregate regression error based on the residual sum of
squares between target y and predicted f(x) is given by

ﬁ S (fx) —w)”.

(x,9)€ED

Lrg(D) = D

Therefore, a well-trained regression model M., that minimizes
L,4(D) can be expected that the predicted degree of sincerity
is desirably close to the human annotated one.

In the same vein of RankSVM [21], given the difference
Axqp of two feature vectors x, and xp, the goal of a super-
vised pairwise ranking method is to learn a model M, that
can predict the difference Ay, of target values y, and y; by
using a prediction function f(Axqap), where Ayar = Ya — Yo
and Ax,p, = X, — Xp. Suppose a set of training pairs P is
selected from D, the incurred rank-based loss is given by
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Lx(P) = (f(Axap) — Ayar)®. (2)

Therefore, by minimizing L,(P), the prediction function, to
some extent, attempts to guarantee that if utterance a sounds
more sincere than b, i.e., yo > ¥yp, then a will have a larger
predicted value than b. Actually, (1) can be regarded as a special
case of (2) if we set utterance b to a trivial comparing reference
(x5, y») = (0, 0) for all utterances a.

2.2. The Combination of Regression and Ranking Losses

As mentioned in Section 1, although the final evaluation met-
ric in our task is totally rank-based, we still need to minimize
the regression loss to a degree in order to 1) reduce the number
of uncontrollable occurrences of outliers and to 2) complement
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Figure 2: The architecture of acR2NNzs.

the pairwise ranking loss, which is actually a makeshift subop-
timal to the minimization of overall ranking error. Finally, by
assuming that M, and M, share the same model M and
combining (1) and (2), the new goal of the training process is to
find an optimal M by minimizing

J =aly(D)+ (1 = a)Lei(P) + MMz, (3)

where a € [0, 1] is a weight to adjust the importance of the
regression loss and the pairwise ranking loss, while ) is a regu-
larization parameter that controls the complexity of the model.

3. Realizations

To realize the objective function (3) by means of artificial neu-
ral networks, we propose two structures, in light of multi-modal
and multi-task neural networks [22, 23, 24, 25, 26, 27, 28].
They mainly differ in 1) the way that the utterance pairs are
generated and used and 2) the way that a test sample is fed into
the machine while predicting.

3.1. The Sampling-based Neural Network

The architecture of the proposed sampling-based regression and
ranking neural networks (spR2NNs) is depicted in Figure 1.
Each input stream, i.e., feature vectors in D or difference vec-
tors in P, is first independently modeled by separate neural
networks, built up of hidden layers {hy} and {hy}, respec-
tively, and their corresponding parameters {W,b}. After a
succession of encoder functions h' = ¢(W'x 4+ b') and
Rt = o(W'h'™! 4 b"), where i > 1 and ¢(-) is the acti-
vation function, the last separate layers are jointly connected to
the strongly parameter-shared layers, denoted by {hs} , which
tend to mix the features learned from two kinds of data streams,
namely, x and Ax. The final output layer, resulted from the last
layer of {hs} through the linear activation function, is consti-
tuted by only two nodes that represent the prediction results and
relate to the ground truth and its difference, y and Ay.



Algorithm 1 The Training Procedure for spR2NN's

Input: The training data X = [x1,...,xx], the development
data U = [ui,...,ux], their respective label vectors y
and v, the initial model M®, the maximum number of
epochs 7', and the tolerance .

Output: The model estimate M.

1: fori =1to T do

2:  Randomly permute X with respect of its columns and
return a new X' and the corresponding y’.

3:  Calculate AX =X — X'and Ay =y — y'.

4:  Update parameters of each layer with (4).

5. if the development set U does not exist then

6 Use Algorithm (2) to calculate p;, the Spearman’s p

of y and the predicted vector from X.

7 if i mod 100 = O then

8: Calculate p; by averaging p;—1io00, - - -

9 if |pi — Pi—100|/Pi—100 < T then

s Pi-

Store the model M as M and break the loop.

11: end if

12: end if

13:  else

14: Use Algorithm (2) to calculate the Spearman’s p from
the development set (U, v) and store the model that
results in the best p so far as M.

15:  endif

16: end for

Algorithm 2 The Prediction Procedure for spR2NNs

Input: The feature matrix X, the model M.
Output: The predicted vector y.
1: Set AX to be a zero matrix with the same shape of X.
2: Feed X and AX into the spR2NNs with M and return y
and Ay. Note that Ay is abandoned.

To train the spR2NNss, the set of candidate pairs P has to
be prepared in advance. Algorithm 1 shows the training proce-
dure, where P is formed by randomly permutating the training
set in each training epoch. Note that the tradeoff coefficient o
in (3) does not function as a specific ratio for randomly picking
up either of the input streams to individually optimize its corre-
sponding loss function, as done in [17]. Instead, it signifies the
relative importance between regression and ranking losses and
involves in the derivation of models. By implementing a back
propagation process from the top output layers down through
the whole spR2NNss to adjust all parameters, each parameter in
M during the t-th epoch is updated by gradient descent as:

Wt (t-1) oJ
~W - U8W<t,1) ) (4a)
) (t-1) oJ
b® b s (4b)

where 7 is the learning rate, and W € {W,, W, Wy} and
b € {bs,by, by} in Figure 1. Since the combined training
data are not deterministic, J as well as the Spearman’s p de-
rived from the training set and the development set, respectively,
are fluctuant, but tend to steadily move over training epochs in
the long term. Therefore, steps 5 to 12 in Algorithm 1 show the
stopping criterion, based on simple moving average of Spear-
man’s p, to deal with the circumstance.

The simplest and reasonable way to feed test samples X
into the trained machine is to set AX to be a matrix that is
filled with zeros, as shown in Algorithm 2.
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Algorithm 3 The Training Procedure for acR2NNs
Input: The same as those in Algorithm 1.
QOutput: The model estimate M.
1: Run the K-means algorithm on X to yield n clusters and
their respective centers A = [ay, ..., ax].
2: Pick out n samples, [Xq1, .. .,Xan], from X that are re-
spectively the closest to the cluster centers.
3: Form input and truth streams in Figure 2 by calculating
AXM' :X—XaiandAyM- :y—yai,i: 17...,71.
4: Run the same steps 4 to 16 in Algorithm 1, except that the
prediction procedure has to be modified for acR2NNs.

3.2. The Anchor-based Neural Network

Without any sampling process implicated in the training phase,
we propose another architecture called the anchor-based regres-
sion and ranking neural networks (acR2NNs), as depicted in
Figure 2. The philosophy behind acR2NNss is to reinterpret the
pairwise ranking problem as a reference-comparing problem.
That is, it presumes that, given some fixed references, namely
anchors, if we can accurately predict the relative distances be-
tween the labels of each sample and the anchors, then the pre-
dicted labels of samples will be ranked nearly the same as the
ground truth. The training procedure of acR2NNs differs from
spR2NNs only in the use of sample pairs. As shown in Al-
gorithm 3, a clustering method, such as K-means, is first per-
formed to derive the most representative samples in the training
set, followed by calculating the feature differences to form other
input and output streams. Note that, similar to other instance-
based learning machines, these anchors have to be reserved with
the model parameters during either training or test phases.

4. Experiments and Results

In this section, we analyze the performance of the proposed two
instance-based methods on the speech material provided by the
Sincerity sub-challenge in ComParE 2016 [3].

4.1. Features and Datasets

Each audio file contains 6,373 features that were extracted by
the organizers with the OpenSMILE toolbox [29]. The training
and test sets are comprised of 655 and 256 utterances recorded
by 22 and 10 speakers, respectively. Since no separate develop-
ment set was provided, prototyping tests are done with Leave-
One-Speaker-Out cross-validation (LOSOCV) on the training
set, where the predicted values are disjointly composed of those
generated by 22 different models. In general, each learning pro-
cess through each training/test combination in LOSOCYV should
be treated as an independent event so that the cross-validation
estimate of metrics, such as accuracies and precisions, can be
derived by average [30]. However, in the prototyping test, the
final Spearman’s p is contributed by 22 batches of predicted
values which are highly correlated in the ranking sense. For in-
stance, the ranked values of batch a might be highly affected by
those of batches other than a. Moreover, we found that although
LOSOCYV can help adjust hyper-parameters in neural networks,
such as the learning rate 7, the regularization parameter )\, the
tradeoff coefficient o and the structure of hidden layers, it is dif-
ficult to help select the suitable initial weights/bias and the opti-
mal number of training epochs [31]. Therefore, we singled out
6 speakers from the training data as a development set, which
satisfies 1) the gender ratio is the same as the test set, 2) the
proportion of the sample size to the new training set is nearly
consistent with that of the test set to the original training set,
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Figure 3: Spearman’s p on the training and development sets
with respect to the training epoch in spR2NNs and acR2NNs.

and 3) the experiment results of the development set are similar
to the baseline results provided by the organizers [3].

4.2. Training on spR2NNs and acR2NNs

For the sake of convenience, the learning rate 7, the regular-
ization parameter ), the tolerance 7, and the maximum number
of training epochs are empirically fixed to 0.1, 1.0, 1075, and
10*, respectively. Initial weights are uniformly sampled by the
Glorot process that is fit for the rectified linear activation func-
tion (RELU) [32]. The adaptive gradient algorithm adopted to
update model parameters is AdaGrad, which scales the learning
rate by dividing with the square root of accumulated squared
gradients [33]. To avoid overfitting, we recorded the evaluation
results in each training epoch as shown in Figure 3, where the
layer structure of spR2NNs is [0, 1]@ 128, which means that the
number of separate layers is 0 while the number of parameter-
shared layers is 1 with 128 hidden nodes, and the layer structure
of acR2NNss is [0, 1]@256 with only 1 anchor sample. We can
see that 1) the optimization of J on the training set indirectly
implies the optimization of Spearman’s p, 2) owing to the sam-
pling process, the curve of spR2NNs is much more fluctuant
than that of acR2NNs, and this might be the reason why the
training process of spR2NNs takes a longer time to converge.

4.3. Results

We compare the results on the development set with vari-
ous tradeoff coefficients in Figure 4. The layer structures of
spR2NNs and acR2NNs are the same as those in Figure 3 ex-
cept for the number of hidden nodes. We can see that 1) the
lower o, which gives a higher weight to the pairwise ranking
loss in (3), does not necessarily guarantee a higher Spearman’s
p, 2) acR2NNs outperforms spR2NNs, and all the results are
better than the baseline expressed by the black dashed line, and
3) spR2NNs with 256 hidden nodes does not perform well, per-
haps because the number of training epochs with higher model
complexity is inadequate to reach convergence.

Figure 5 shows the results on the development set with var-
ious settings of the layer structure and number of anchor sam-
ples. Note that the numbers of hidden notes and the tradeoff
coefficients used in spR2NNs and acR2NNs are based on the
best results in Figure 4. The reason why the acR2NNs with
larger numbers of anchor samples as well as the more complex
layer structures did not reveal their theoretical learning power
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might lie in the shortage of training samples.

Table 1 shows the final results on the test data provided by
the organizers. The performance was obtained from a model
trained on the original training set with the optimal parameters
determined in the development phase. Note that the stopping
criterion in Algrithm 1 (cf. steps 5-12) was adopted due to lack
of the development data while training spR2NNs and acR2NNss.
We can see that our proposed methods outperform the baseline
by relative improvements of 6.8 % and 27.1 % in the test and
development sets, respectively.

Table 1: Spearman’s p derived on the development and test sets
with respect to the baseline and our proposed methods.

Method LOSOCV Devel. Test

Baseline (SVR, C = 10™%) 474 602 602
spR2NNs ([0, 11@128) 499 706 .629
acR2NNs ([0, 11@256) 477 J10 599

5. Conclusions

In this paper, we have proposed a framework based on simulta-
neous minimization of regression and ranking losses for the task
of automatic sincerity evaluation. The framework has been re-
alized by two kinds of neural network-based architectures. The
experiment results demonstrated the potential of the framework.
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